Multivariate Spearman’s ρ for Aggregating Ranks Using Copulas

نویسندگان

  • Justin Bedő
  • Cheng Soon Ong
  • Jie Peng
چکیده

We study the problem of rank aggregation: given a set of ranked lists, we want to form a consensus ranking. Furthermore, we consider the case of extreme lists: i.e., only the rank of the best or worst elements are known. We impute missing ranks and generalise Spearman’s ρ to extreme ranks. Our main contribution is the derivation of a non-parametric estimator for rank aggregation based on multivariate extensions of Spearman’s ρ, which measures correlation between a set of ranked lists. Multivariate Spearman’s ρ is defined using copulas, and we show that the geometric mean of normalised ranks maximises multivariate correlation. Motivated by this, we propose a weighted geometric mean approach for learning to rank which has a closed form least squares solution. When only the best (top-k) or worst (bottomk) elements of a ranked list are known, we impute the missing ranks by the average value, allowing us to apply Spearman’s ρ. We discuss an optimistic and pessimistic imputation of missing values, which respectively maximise and minimise correlation, and show its effect on aggregating university rankings. Finally, we demonstrate good performance on the rank aggregation benchmarks MQ2007 and MQ2008.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multivariate Spearman's rho for Aggregating Ranks Using Copulas

We study the problem of rank aggregation: given a set of ranked lists, we want to form a consensus ranking. Furthermore, we consider the case of extreme lists: i.e., only the rank of the best or worst elements are known. We impute missing ranks by the average value and generalise Spearman’s ρ to extreme ranks. Our main contribution is the derivation of a non-parametric estimator for rank aggreg...

متن کامل

Multivariate Spearman’s rho for rank aggregation

We study the problem of rank aggregation: given a set of ranked lists, we want to form a consensus ranking. Our main contribution is the derivation of a nonparametric estimator for rank aggregation based on multivariate extensions of Spearman’s ρ, which measures correlation between a set of ranked lists. Multivariate Spearman’s ρ is defined using copulas, and we show that the geometric mean of ...

متن کامل

Bivariate Kumaraswamy Models via Modified FGM Copulas: Properties and Applications

A copula is a useful tool for constructing bivariate and/or multivariate distributions. In this article, we consider a new modified class of FGM (Farlie–Gumbel–Morgenstern) bivariate copula for constructing several different bivariate Kumaraswamy type copulas and discuss their structural properties, including dependence structures. It is established that construction of bivariate distributions ...

متن کامل

Correlations and Copulas for Decision and Risk Analysis

The construction of a probabilistic model is a key step in most decision and risk analyses. Typically this is done by defining a joint distribution in terms of marginal and conditional distributions for the model’s random variables. We describe an alternative approach that uses a copula to construct joint distributions and pairwise correlations to incorporate dependence among the variables. The...

متن کامل

Multivariate Extensions of Spearman’s Rho and Related Statistics

Multivariate measures of association are considered which, in the bivariate case, coincide with the population version of Spearman’s rho. For these measures, nonparametric estimators are introduced via the empirical copula. Their asymptotic normality is established under rather weak assumptions concerning the copula. The asymptotic variances are explicitly calculated for some copulas of simple ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016